64 research outputs found

    Restoration of rhythmicity in diffusively coupled dynamical networks

    Get PDF
    We acknowledge financial support from the National Natural Science Foundation of China (No. 11202082, No. 61203235, No. 11371367 and No. 11271290), the Fundamental Research Funds for the Central Universities of China under Grant No. 2014QT005, IRTG1740(DFG-FAPESP), and SERB-DST Fast Track scheme for young scientist under Grant No. ST/FTP/PS-119/2013, NSF CHE-0955555 and Grant No. 229171/2013-3 (CNPq).Peer reviewedPublisher PD

    Fronts and patterns in a spatially forced CDIMA reaction

    Get PDF
    We use the CDIMA chemical reaction and the Lengyel–Epstein model of this reaction to study resonant responses of a pattern-forming system to time-independent spatial periodic forcing. We focus on the 2:1 resonance, where the wavenumber of a one-dimensional periodic forcing is about twice the wavenumber of the natural stripe pattern that the unforced system tends to form. Within this resonance, we study transverse fronts that shift the phase of resonant stripe patterns by π. We identify phase fronts that shift the phase discontinuously, and pairs of phase fronts that shift the phase continuously, clockwise and anti-clockwise. We further identify a front bifurcation that destabilizes the discontinuous front and leads to a pair of continuous fronts. This bifurcation is the spatial counterpart of the nonequilibrium Ising–Bloch (NIB) bifurcation in temporally forced oscillatory systems. The spatial NIB bifurcation that we find occurs as the forcing strength is increased, unlike earlier studies of the NIB bifurcation. Furthermore, the bifurcation is subcritical, implying a range of forcing strength where both discontinuous Ising fronts and continuous Bloch fronts are stable. Finally, we find that both Ising fronts and Bloch fronts can form discrete families of bound pairs, and we relate arrays of these front pairs to extended rectangular and oblique patterns

    Turing patterns in the chlorine dioxide-iodine-malonic acid reaction with square spatial periodic forcing

    Get PDF
    We use the photosensitive chlorine dioxide-iodine-malonic acid reaction-diffusion system to study wavenumber locking of Turing patterns to two-dimensional "square" spatial forcing, implemented as orthogonal sets of bright bands projected onto the reaction medium. Various resonant structures emerge in a broad range of forcing wavelengths and amplitudes, including square lattices and superlattices, one-dimensional stripe patterns and oblique rectangular patterns. Numerical simulations using a model that incorporates additive two-dimensional spatially periodic forcing reproduce well the experimental observations.National Science FoundationNational Science Foundation [CHE-1012428]U.S.Israel Binational Science FoundationU.S.-Israel Binational Science FoundationCoordenacao de Aperfeicoamento de Pessoal de Nivel Superior (CAPES)CAPES (Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior) [0337110

    The dual pathway in action: decoupling parallel routes for CO2 production during the oscillatory electro-oxidation of methanol

    Get PDF
    As in the case of most small organic molecules, the electro-oxidation of methanol to CO2 is believed to proceed through a so-called dual pathway mechanism. The direct pathway proceeds via reactive intermediates such as formaldehyde or formic acid, whereas the indirect pathway occurs in parallel, and proceeds via the formation of adsorbed carbon monoxide (COad). Despite the extensive literature on the electro-oxidation of methanol, no study to date distinguished the production of CO2 from direct and indirect pathways. Working under, far-from-equilibrium, oscillatory conditions, we were able to decouple, for the first time, the direct and indirect pathways that lead to CO2 during the oscillatory electro-oxidation of methanol on platinum. The CO2 production was followed by differential electrochemical mass spectrometry and the individual contributions of parallel pathways were identified by a combination of experiments and numerical simulations. We believe that our report opens some perspectives, particularly as a methodology to be used to identify the role played by surface modifiers in the relative weight of both pathways-a key issue to the effective development of catalysts for low temperature fuel cells.CNPqCNPq [306151/2010-3]FAPESP [09/00153-6, 09/11073-3, 08/05156-0, 09/07629-6]FAPES

    The use of multivariate analysis in the control of the morphological period of (electro)chemical oscillators

    Get PDF
    This study employ a multivariate statistical analysis in chemical and electrochemical oscillators to determine accurately the effect of experimental parameters on the oscillation frequency. This work has been published in Physical Chemistry Chemical Physics (PCCP) and highlighted as an outside front cover

    Recent Engagements with Adam Smith and the Scottish Enlightenment

    Full text link
    • 

    corecore